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Abstract We investigated the allelic nature and map
locations of Hordeum vulgare (barley) homologs to three
classes of Arabidopsis low temperature (LT) regulatory
genes—CBFs, ICE1, and ZAT12—to determine if there
were any candidates for winterhardiness-related quan-
titative trait loci (QTL). We phenotyped the Dicktoo ·
Morex (D·M) mapping population under controlled
freezing conditions and in addition to the previously
reported 5H-L Fr-H1 QTL, observed three additional
LT tolerance QTLs on 1H-L, 4H-S, and 4H-L. We
identified and assigned either linkage map or chromo-
some locations to 1 ICE1 homolog, 2 ZAT12 homologs,
and 17 of 20 CBF homologs. Twelve of the CBF genes
were located on 5H-L and the 11 with assigned linkage

map positions formed 2 tandem clusters on 5H-L. A
subset of these CBF genes was confirmed to be physi-
cally linked, validating the map position clustering. The
tandem CBF clusters are not candidates for the D·M
LT tolerance Fr-H1 QTL, as they are �30 cM distal to
the QTL peak. No LT tolerance QTL was detected in
conjunction with the CBF gene clusters in Dicktoo ·
Morex. However, comparative mapping using common
markers and BIN positions established the CBF clusters
are coincident with reported Triticeae LT tolerance and
COR gene accumulation QTLs and suggest one or more
of the CBF genes may be candidates for Fr-H2 in some
germplasm combinations. These results suggest mem-
bers of the CBF gene family may function as compo-
nents of winterhardiness in the Triticeae and underscore
both the importance of extending results from model
systems to economically important crop species and in
viewing QTL mapping results in the context of multiple
germplasm combinations.

Introduction

In temperate cereal crops (e.g., wheat, barley, rye),
winterhardiness is a trait of adaptive and economic
importance (Thomashow 1999; Cattivelli et al. 2002).
Winterhardiness has three principal components—low
temperature (LT) tolerance, vernalization (VRN) re-
sponse, and photoperiod (PPD) sensitivity—and within
the Triticeae, a broad range of phenotypic variation
occurs for all three components at the genus, species,
and accession levels. VRN and PPD are adaptive traits
amenable to phenotypic selection and recent advance-
ments make them tractable targets for both marker-as-
sisted selection (MAS) and genetic engineering. While
LT tolerance is a trait of tremendous adaptive and
economic significance due to the risk of winter injury
faced by fall-sown cereal crops, the genetic basis of LT
tolerance in the Triticeae, currently a focus of intensive
research, is not as advanced as the VRN components.
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The cereal tribe forms a homogeneous genetic system,
and therefore insights into the components of winter-
hardiness are typically applicable between members of
the cereal tribe (Dubcovsky et al. 1998; Mahfoozi et al.
2000). Barley (Hordeum vulgare subsp. vulgare) can
function as a model for dissecting the trait components of
winterhardiness in the Triticeae, including LT tolerance.
Barley is a self-pollinated diploid, the primary gene pool
contains abundant genetic variation for the winterhardi-
ness components, and there is an ever-expanding set of
genetic and molecular analysis tools (reviewed in Hayes
et al. 2003), including multiple mapping populations,
arrayed BAC clones, a large EST database, and a
microarray chip (Close et al. 2004). Relative to the three
winterhardiness traits, barley germplasm can be classified
as winter, facultative, or spring. In general, winter varie-
ties are LT tolerant, PPD sensitive, and highly responsive
to VRN. Spring varieties typically have minimal LT tol-
erance capacity, do not respond to VRN, and are insen-
sitive to short day PPD. The term ‘‘facultative’’ has
lacked a rigorous definition, but is generally used to de-
scribe genotypes that are LT tolerant, do not respond to
VRN, and may or may not be PPD sensitive. We recently
found that a representative sample of facultative varieties
have a complete deletion of the VRN-H2 locus on 4H,
accounting for their lack of a strong VRN response
(Karsai et al. 2005; von Zitzewitz et al. 2005).

In the Triticeae genome, the long arm of chromosome
5 has been the region most frequently reported to be
associated with LT tolerance and VRN response (Hayes
et al. 1997; Cattivelli et al. 2002; Vágújfalvi et al. 2003;
Francia et al. 2004). Until recently, these genes have been
reported as quantitative trait locus (QTL) effects because
they show complex, rather than Mendelian, inheritance.
Most recently, two LT tolerance QTLs, approximately
25 cM apart, were reported in the Nure · Tremois (N·T)
barley population (Francia et al. 2004). The N·T LT
tolerance Fr-H1 QTL corresponds to the Dicktoo ·
Morex (D·M) barley population LT tolerance QTL of
Hayes et al. (1993), which in turn is coincident with VRN
and flowering time (heading date) QTLs (Hayes et al.
1993, 1997; Laurie et al. 1995). The N·T LT tolerance Fr-
H2QTL is syntenous with a LT tolerance QTL in diploid
wheat (Vágújfalvi et al. 2003); COR gene product accu-
mulation QTLs also map to this position in both species.

Recently, candidate genes have been mapped to these
QTL positions. Barley HvBM5A maps to the VRN-H1
QTL position (von Zitzewitz et al. 2005), in agreement
with the position of TmAP1, the candidate VRN-Am1
gene of diploid wheat (Yan et al. 2003). It is possible that
HvBM5A has pleiotropic effects on VRN response,
flowering time, and/or LT tolerance. However, Karsai
et al. (2001) have found that these three traits occur in all
possible combinations in barley, suggesting linkage, ra-
ther than pleiotropy, may be responsible. Beales et al.
(2005) recently mapped the photoreceptor PhyC—a
potential candidate for the day length-influenced flow-
ering time QTL—to this region in hexaploid wheat. We
recently mapped a CBF gene coincident with LT toler-

ance and COR gene product accumulation QTLs distal
to the VRN-H1 locus/QTL cluster (Francia et al. 2004),
and Choi et al. (2002) mapped HvCBF3 to this same
region. The presence of a CBF gene at the homoeolo-
gous region was also observed in diploid wheat
(Vágújfalvi et al. 2003).

We found the occurrence of a CBF gene coincident
with LT tolerance and COR gene product accumulation
QTLs most intriguing because in Arabidopsis CBF genes
encode LT-induced transcription factors that regulate an
important branch of the cold acclimation pathway
(Fowler and Thomashow 2002). Within this branch are
many of the characterized COR genes that contribute to
LT tolerance capacity and the COR genes harbor CRT
motif(s) in their promoters that the CBFs bind to induce
expression. The LT-induced expression of the AtCBF
genes is regulated via MYC cis elements bound by ICE
transcription factors belonging to the bHLH domain
family and ICE1 (AtICE1) directly regulates AtCBF3
(Chinnusamy et al. 2003). In Arabidopsis, the majority
of the most highly induced cold-regulated genes can be
assigned to the CBF and ZAT12 regulons (Fowler and
Thomashow 2002; Vogel et al. 2005). ZAT12 (At-
ZAT12) is a C2H2 Zn-finger domain factor containing
similar sequences in its promoter to the ICE-controlled
MYC elements of CBF genes, suggesting AtICE1, or a
close relative, also regulates AtZAT12 expression.
Importantly, the combined AtCBF and AtZAT12 regu-
lons account for a majority of the LT-upregulated genes
(Vogel et al. 2005) and leads to the questions ‘‘is there a
comparable LT tolerance pathway in the Triticeae?’’ and
‘‘do cereal regulatory factor homologs account for LT
tolerance QTL?’’

The availability of the extensive barley EST sequence
collection (�420 K ESTs, representing multiple geno-
types, as of the 07/08/05 release) makes the routine
identification and analysis of barley homologs to Ara-
bidopsis genes feasible. As a first step in this compara-
tive mapping exercise, we cloned nearly twenty CBF
genes from the barley genotype Dicktoo (Skinner et al.
2005). Our objectives in the current study were to (1)
determine the level of allelic variation at these CBF loci
in representative accessions, (2) assign their linkage map
positions using the Dicktoo · Morex mapping popula-
tion (a standard reference for winterhardiness trait
mapping) and (3) determine the positional relationships
of the CBF genes with LT tolerance QTL in Dicktoo ·
Morex and other Triticeae mapping resources. In addi-
tion to the CBF genes, we investigated the linkage map
positions, and thus QTL candidacy, of barley homologs
to AtICE1 and AtZAT12.

Materials and methods

Plant material

Barley genotypes Dicktoo, Morex, Strider, and 88Ab536
were used as mapping and allele sequencing resources.
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The Dicktoo · Morex (D·M) facultative · spring pop-
ulation is a standard for winterhardiness physiology and
genetics research and the linkage map based on this
population has sufficient markers in common with other
mapping populations to allow for comparison and
alignment (Pan et al. 1994; van Zee et al. 1995; Hayes
et al. 1997; Karsai et al. 1999; Fowler et al. 2001;
Mahfoozi et al. 2000). The Strider · 88Ab536 (STAB)
winter · facultative population was developed as a
complimentary mapping tool segregating for VRN
requirement (Filichkin et al. 2005). The D·M popula-
tion was phenotyped for LT tolerance under controlled
freezing conditions in the Agricultural Research Insti-
tute of the Hungarian Academy of Sciences (Mar-
tonvásár, Hungary) phytotron facility as in Sz}ucs (2003),
to determine the relationship of observed LT tolerance
QTL with candidate genes and QTL reported in other
Triticeae populations. Briefly, five randomly arranged
replications of 15 rows of 10 plants each were grown in a
chamber for 6 weeks where temperature, light intensity,
and illumination length were gradually reduced at
weekly intervals to a final temperature of 3�C to simu-
late natural fall/winter conditions before exposure to
two subsequent hardening phases. In hardening phase 1,
daily temperature fluctuated between +3�C and �3�C
for 1 week, with 21 h day length and 190 lmol/m2 s
illumination. In hardening phase 2, the temperature was
reduced to �4�C and kept constant for 4 days without
illumination. Following phase 2, chamber temperature
was reduced 1�C/h to �12.5�C and the plants main-
tained at �12.5�C for 24 h. The temperature was then
raised 1�C/h to a final temperature of 17�C. After
2 days, plants were cut back to a height of 3 cm, grown
for a further 3 weeks with a day/night temperature of
17/16�C, 14 h day length, and 130 lmol/m2 s illumina-
tion. Following the third week, growing plants that had
survived freezing were clearly distinguished from those
that had died. Surviving plant number was expressed as
a percentage of the plant number before freezing.

Allele isolation

The allele isolation method (EST, PCR, etc.) for each
Arabidopsis LT tolerance regulon barley homolog is
indicated in Table 1 and GenBank accession numbers
for novel alleles are listed in Table S1. Full cDNA insert
sequences for each EST clone were determined by direct
sequencing. For PCR amplicon cloning, total gDNA
was extracted from a single plant of each genotype using
a DNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA)
and used as template. PCR was performed under stan-
dard conditions using a Taq DNA polymerase kit
(Qiagen) and the products cloned using a pGEM-T-Easy
Kit (Promega, Madison, WI, USA). Primer sets and
sequences utilized for allelic PCR amplicon cloning are
listed in Table S2. For each GenBank-reported gene/
allele isolated via PCR, cloned amplicons of at least two
or more independent PCR reactions were sequenced and

verified as identical to confirm PCR-based nucleotide
substitutions had not occurred. Only the non-primer
portion of each consensus amplicon was reported. CBF-
positive Morex BAC clones listed in Choi et al. (2002)
were obtained from Andris Kleinhofs (Washington State
University).

Linkage mapping and QTL analysis

Linkage map positions for HvCBF genes, HvICE2,
HvZFP16-1, and HvZFP16-2 were assigned by (1)
mapping allelic polymorphisms in the D·M or STAB
populations (n=92 and 91 doubled haploid (DH) lines,
respectively) or, when no polymorphisms were detected,
by (2) assignment of loci to chromosome arms via the
barley-wheat disomic addition lines (Islam et al. 1981).
The mapping strategy employed for each locus (popu-
lation vs. addition line) is indicated in Table 1; mapping
primer pairs and corresponding sequences are provided
in Table S3. JoinMap 3.0 (Van Ooijen and Voorrips
2001) was used for linkage map construction using de-
fault parameters. QTL Cartographer Version 2.5 (Wang
et al. 2005a) was used for QTL analyses employing the
standard Composite Interval Mapping model and the
forward and backward regression method with seven
control markers and a 10 cM window size. Linkage map
positions (Table 1) were related to all winterhardiness
QTL reported in the literature using both common
markers and the BIN map concept of Kleinhofs and
Graner (2001).

Phylogenetic analysis

Genes and accession numbers used for phylogenetic
analysis are listed in Table S1. Protein sequences were
aligned using ClustalW, and refined by hand using
GeneDoc Version 2.6 (http://www.psc.edu/biomed/
genedoc). Phylogenetic analyses on refined alignments
were conducted using MEGA Version 2.1 (http://
www.megasoftware.net/) and trees generated using
neighbor joining and minimum evolution default meth-
odologies on 1,000 bootstrap replications.

Results

Barley homolog identification strategy

Our identification strategy for barley homologs to Ara-
bidopsis regulatory genes via analysis of the barley EST
database revealed the presence of a large HvCBF gene
family, as well as AtICE1 and AtZAT12 homologs. We
narrowed our searches by also using the rice genome to
verify that searches using the closest rice homolog to a
queried Arabidopsis gene identified the same barley EST
candidate. Following EST identification via database
analyses, the respective clones were obtained, the cDNA
insert sequenced, and alleles amplified from Dicktoo and
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Morex; in many cases, we additionally amplified alleles
from Strider and 88Ab536. These amplified alleles were
used to (1) investigate the degree of allelic polymorphism
between genotypes contrasting for winterhardiness
traits, and to (2) identify suitable mapping polymor-
phisms to determine whether a gene was a LT tolerance
QTL candidate.

Identification and allelic variation of barley CBF genes

We recently reported that barley contains a large CBF
family of at least 20 genes (designated HvCBFs), focus-
ing on alleles from Dicktoo (Skinner et al. 2005). In this
report, we expand on these findings with information on
allelic variation at these loci. We cloned Morex alleles to
each HvCBF, where possible, in order to determine the
amount of allelic variation relative to Dicktoo and allow
placement in the D·M population. Alleles at a subset of
the HvCBF genes were also isolated from Strider and
88Ab536, and alleles from additional genotypes were
obtained via sequencing of EST clones derived from
these varieties (Table 1). Based on coding sequence, the
barley CBF genes can be grouped into three phyloge-
netic clades, which we have designated the HvCBF1-,
HvCBF3-, and HvCBF4-subgroups (Fig. 1); these

clades are supported by the CBF gene families of rice
and wheat (Skinner et al. 2005).

In general, alleles at each of the HvCBF loci were
highly conserved. A detailed summary of allelic vari-
ation features for each locus is presented in the Online
Supplement; a general summary follows. Single nucle-
otide polymorphisms (SNPs) were the most common
variant, and when present, occur throughout the cod-
ing and untranslated regions (UTRs). Most coding
region-localized SNPs either did not generate an amino
acid substitution or resulted in a conservative substi-
tution. In the latter case, the majority of amino acid
substitutions occurred in the C-terminal region, al-
though these changes did not alter the overall domain
acidity or side chain character of amino acid residues
(Table S1) critical for trans-activation (Wang et al.
2005b). Insertion/deletion (InDel) events were rare, but
present, while no simple sequence repeat (SSR) poly-
morphisms were observed. Probable gene deletions
were observed: HvCBF2B and HvCBF10B appear to
be absent from Morex, while HvCBF4A/B appear to
be absent from 88Ab536, and HvCBF4D is absent
from Dicktoo, Morex, and Strider. While the differ-
ences were minimal relative to the variation observed,
the HvCBF3-subgroup members displayed the most
polymorphisms, HvCBF1-subgroup members were the

Table 1 Allele isolation and mapping summary

Gene HvCBF-subgroup Cloned allelesa Mapping genotype(s)b Chromosomec BIN

HvICE2 NA Dt4, Mx1,4 D·M 3H-L1 13/14
HvZFP16-1 NA Dt4, Mx4, Op1 D·M 1H-S1 4
HvZFP16-2 NA Dt4, Mx4, Op1 Betzes 1H3 ND
HvCBF1 1 Dt4, Mx1,4, St4, Ab4, Hn6,d STAB 6H-L1,3 7
HvCBF2A 4 Dt4, Mx4, St4, Ab4 Dicktoo 5H-L4 10
HvCBF2B 4 Dt4, St4, Hn6,d Betzes 5H-L3 ND
HvCBF3 3 Dt4, Mx4,6,d, St4, Ab4 D·M, STAB 5H-L1 10
HvCBF4A 4 Dt2, Mx6, St4,e D·M 5H-L1,f 10
HvCBF4B 4 Dt2, Mx1, CI1 D·M 5H-L1,f 10
HvCBF4D 4 Ab4 ND ND ND
HvCBF5 1 Dt4, Mx4, St4, Ab4, Op1 D·M 7H-S1 2
HvCBF6 3 Dt4, Mx1, St4, Ab4 D·M, STAB 5H-L1,2 10
HvCBF7 1 Dt4, Mx1, St4, Ab4 Betzes 6H-L3 ND
HvCBF8A 3 Dt4, Mx5, Ab4 ND ND ND
HvCBF8B 3 Dt4, Mx4, St4, Ab4 ND ND ND
HvCBF8C 3 Dt4, Mx4 D·M 2H-S1 8
HvCBF9 4 Dt4, Mx1,2, St4, Ab4 D·M 5H-L1 10
HvCBF10A 3 Dt4, Mx4, St4, Ab4 D·M 5H-L1 10
HvCBF10B 3 Dt4, St4, Ab4, Op1 Dicktoo 5H-L4 10
HvCBF11 1 Dt4, Mx4, St4, Ab4, Op1 Betzes 2H-L3 ND
HvCBF12 3 Dt3, Mx3 D·M 5H-L1 10
HvCBF13 3 Dt3 D·M 5H-L4,5 10
HvCBF14 4 Dt4, Mx4 D·M 5H-L1 10

NA not applicable, ND not determined
aIsolation method and genotype allele codes: 1 EST, 2 cDNA library, 3 gDNA library, 4 PCR, 5 BAC, 6 Reported in Genbank;
Genotypes: Ab: 88Ab536, CI: CI16151, Dt: Dicktoo, Hn: Halcyon, Mx: Morex, Op: Optic, St: Strider
bBarley genotype used to determine/infer linkage map or chromosome location: Dicktoo · Morex population (D·M), Strider · 88Ab536
population (STAB), barley–wheat addition lines (Betzes), Dicktoo gDNA phage clone (Dicktoo)
cChromosome location or map position determined by: 1 CAPs assay, 2 InDel, 3 barley–wheat addition lines, 4 inferred via phage clone
gene linkage, 5 presence/absence
dBarley CBF alleles first reported in Choi et al. (2002), Xue (2002), or Xue (2003)
eIt is currently unclear if the Strider HvCBF4 allele represents a 4A, 4B, or novel HvCBF4 form
fHvCBF4A and HvCBF4B coamplify and map as a single locus in the extended (n=236) D·M mapping population
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most conserved, and HvCBF4-subgroup members were
intermediate.

Identification of barley ICE gene

BLAST searches were conducted against the rice gen-
ome and barley EST collection to identify monocot
homologs to AtICE1. A rice gene designated ICE1-like
(AP004332), termed OsICE1-like hereafter, is the closest
rice homolog. BLAST searches with both AtICE1 and
OsICE1-like identified the same 5¢-truncated Morex
EST clone (BE602161); subsequent analysis identified a
second truncated Morex EST clone (BI947346) from the
same gene containing additional 5¢ sequence. We ob-
tained and sequenced both ESTs (Table S1), designating
the gene HvICE2; a closely related but distinct gene has
already been designated HvICE1 (Tondelli et al. 2006).
We amplified and cloned Morex and Dicktoo HvICE2
alleles from gDNA (Table S1). HvICE2 contains three
introns and three SNPs were present between the alle-
les—one conservative SNP in the coding region and two
in the 3¢ UTR; the alleles are predicted to specify iden-

tical polypeptides (Fig. S1). The large amino terminal
extension of OsICE1-like is unrelated to that of AtICE1
(Fig. S1).

Identification of barley ZAT12 homologs

BLAST searches were conducted against the barley EST
collection (http://www.ncbi.nlm.nih.gov) and rice gen-
ome to identify monocot homologs to AtZAT12, which
revealed two barley ESTs (BQ761311, BI777789) from
the genotype Optic and the rice gene ZFP16
(AY305865). The two barley ESTs represent distinct but
closely related genes which we designate HvZFP16-1
and HvZFP16-2 (see Online Supplement) and refer to
the rice gene as OsZFP16 (Table S1). We amplified and
cloned alleles to both genes from Morex and Dicktoo
(Table S1). Dicktoo and Morex HvZFP16-2 alleles are
identical while the HvZFP16-1 alleles differ by five
SNPs—three are in the coding region, leading to one
amino acid substitution, and two are in the 3¢ UTR
(Fig. S2).

Freezing test and LT tolerance QTL analyses results

The Martonvásár phytotron LT tolerance phenotyping
under controlled experimental freezing conditions sup-
port previous reports for the D·M population (Hayes
et al. 1993, 1997; Pan et al. 1994). At �12.5�C, survival
values for the Dicktoo and Morex parental genotypes
were 85.3 and 0.0%, respectively, while the population
average was 26.2% (Fig. S3). Using this new data and a
LOD 2.5 threshold, novel LT tolerance QTLs are
apparent on 1H (LOD 5.7), 4H-S (LOD 3.7), and 4H-L
(LOD 3.0), in addition to the previously reported large-
effect Fr-H1 QTL on 5H (LOD 23.9) whose position is
now better-resolved (Fig. 2, Table 2); the position of the
1H LT tolerance QTL appears to be syntenous with the
Ppd-H2 PPD QTL (Laurie et al. 1995).

Map locations of barley LT regulatory factor homologs

HvICE2 mapped to 3H, and while HvZFP16-1 mapped
to 1H, it was not coincident with the LT tolerance QTL
(Figs. 2, 3). The Dicktoo and Morex HvZFP16-2 alleles
were not polymorphic, but could be assigned to 1H via
the barley-wheat addition lines; its position relative to
the QTL is unknown. Of the 20 HvCBFs, 11 were
mapped in the D·M population, 3 in the STAB popu-
lation, and 3 assigned to chromosome arms via the
barley-wheat addition lines (Table. 1, S3). The barley
CBF genes are located on four chromosomes, with a
majority located in two tandem clusters on the long arm
of chromosome 5H (Table 1, Figs. 2, 3). Five HvCBF
genes were mapped or localized to chromosomes other
than 5H. The HvCBF8C pseudogene (see Online Sup-
plement) was mapped to chromosome 2H-S, HvCBF5 to
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Fig. 1 Barley CBFs form three phylogenetic clades. A minimum
evolution phylogenetic tree was derived from an alignment of the
barley CBF polypeptides; an analagous tree topology was obtained
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836



7H-S and HvCBF1 was mapped to 6H-L. Due to a lack
of allelic variation at HvCBF7, HvCBF8A, HvCBF8B,
and HvCBF11 in the four genotypes, we used the barley-
wheat addition lines to assign linkage map positions. We
were able to assign chromosome arm locations for
HvCBF7 (6H-L) and HvCBF11 (2H-L) (Table 1); wheat
cross-amplification currently precludes HvCBF8A and
HvCBF8B assignment.

Using both the D·M and STAB populations, 11
HvCBFs (2A, 3, 4A, 4B, 6, 9, 10A, 10B, 12, 13, and 14)
map to a localized region on the long arm of chromo-
some 5H (5H-L) (Figs. 3, 4), the region where major
effect LT tolerance QTL, are reported in the Triticeae
(Hayes et al. 1997; Vágújfalvi et al. 2003; Francia et al.
2004). However, these genes are approximately 30 cM
distal to the D·M LT tolerance Fr-H1 QTL peak
(Figs. 2, 4). Comparative mapping using common
markers and BIN assignments established these CBF
genes are coincident with the 5H-L LT tolerance Fr-H2
QTL reported in the barley N·T population (Fig. 4) (see
Discussion). HvCBFs 3, 4A, 4B, 6, 9, 10A, 12, 13, and 14
were mapped in D·M (Table 1). HvCBF3 and HvCBF6
were also mapped in the STAB population to a corre-
sponding linkage map position (Table 1; not shown).
The map positions of HvCBF2A, HvCBF10B, and

HvCBF13 were inferred via linkage to physically map-
ped 5H-L HvCBF genes present on Dicktoo gDNA
phage clones (Table 1). HvCBF2A and HvCBF4B reside
on the same bacteriophage k clone, as do HvCBF10A
and HvCBF10B, and HvCBF3 and HvCBF13 (Stockin-
ger et al. 2005). HvCBF2B was assigned to 5H-L using
the barley–wheat addition lines.

The HvCBF genes mapping to 5H-L are all members
of the HvCBF3- and HvCBF4-subgroups (Fig. 1, Ta-
ble 1). HvCBFs 2A, 4A, 4B, and 9 form one linked
cluster, while HvCBFs 3, 6, 10A, 10B, 12, 13, and 14
form a second linked cluster one cM distant. In addition,
HvCBF3, HvCBF10A, and HvCBF6 are present on the
single BAC clone 804E19 (Table S4), which is consistent
with the mapping data indicating that the cosegregating
map positions accurately reflect the physical arrange-
ment of HvCBF genes at this multigene locus.

Discussion

Our strategy for using the large H. vulgare EST collec-
tion to identify barley homologs to key regulatory genes
controlling Arabidopsis LT tolerance regulons was
successful. We identified 20 barley CBFs, 1 barley
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population was plotted relative to chromosomes and a LOD 2.5
cutoff score used. The LOD 2.5 value is indicated by the horizontal
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indicated chromosome. The positions of key genes are indicated
relative to the QTL profile and the large cluster of HvCBF genes on
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Table 2 D·M LT tolerance
QTL peak summary Chromosome BIN Position

(cM)
LOD
score

Closest
marker

Additive
effect

R2

1H-L 11 82 5.7 saflp164 7.6 0.08
4H-S 5 8 3.7 saflp176 �5.4 0.04
4H-L 12 68 3.0 Bmy1 5.1 0.04
5H-L 11 98 23.9 HvBM5A 20.8 0.62
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homolog to AtICE1, and 2 barley homologs to At-
ZAT12. Per the HvCBF genes, this multigene family is
clearly larger in barley, a monocot, relative to two dicots
where the genome has been sequenced: Arabidopsis and
poplar each contain only six CBF genes (Benedict et al.
2005). While we did not fully explore the ICE and ZAT
gene families in barley, the identified genes represented
the closest homologs present in the current EST collec-
tion. Given the large size of the gene families in Ara-
bidopsis (Reichmann and Ratcliffe 2000) to which ICE
and ZAT12 belong, it is likely that there are more ho-
mologs in barley functioning in a similar capacity.

Our aim to map barley homologs of key Arabidposis
LT tolerance regulatory factors and identify candidates
for Triticeae LT tolerance QTL was also successful, al-
though some key questions remain. A first step in
aligning candidate genes relative to QTL was to re-score
the LT tolerance phenotype in the D·M population
using controlled freeze tests. This experiment corrobo-
rated previous reports, in which the chromosome 5H Fr-
H1 QTL has a very large effect, explaining 62% of the
phenotypic variation, and identified three additional
smaller effect QTL. Additionally, it established the D·M
population does not segregate for the nearby Fr-H2 ef-
fect observed in the N·T population (Francia et al.
2004). At the chromosome 4H-S QTL, the LT tolerance
susceptible parent contributed the favorable allele; in

many QTL mapping populations both parents are found
to contribute favorable alleles, a hypothesized basis for
transgressive segregation (Hayes et al. 2003). Of the four
QTL identified in D·M, none are coincident with the
linkage map positions of the currently known barley
homologs to key genes in the Arabidopsis cold accli-
mation pathway (Fig. 2). As none of the candidate genes
mapped colocalize to the D·M LT tolerance QTL
positions and we mapped homologs to multiple loca-
tions in the barley genome, three scenarios are possible:
(1) the homologs map to LT tolerance QTL present in
germplasm other than D·M, (2) the homologs map to
positions where there are no LT tolerance QTL effects,
and (3) the LT tolerance QTL are at positions where
candidates have not yet been identified.

Relative to the first scenario, we mapped genes in the
D·M population to complement our Dicktoo allele
isolation efforts (Skinner et al. 2005) and place the genes
in a population that had numerous common markers to
aid in the comparative mapping analysis with other
Triticeae populations. The most significant finding of
this research is the presence of 10 of the 17 mapped
HvCBF genes coincident with the position of a LT tol-
erance QTL we reported in another barley population
(Francia et al. 2004) and which is coincident with a QTL
in diploid wheat (Vágújfalvi et al. 2003) (Fig. 4). We
had earlier reported one HvCBF4 form at this position
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(Fr-H2, BIN10) (Francia et al. 2004), confirming the
syntenous D·M HvCBF4 loci and co-clustered genes
mapped in this work lie directly under the Fr-H2 QTL.
In a recent collaborative effort, we established five
additional CBF genes, including HvCBF3, are also
present at this locus underlying the Fr-H2 QTL (Fig. 4)
(Tondelli et al. 2006). The barley HvCBF3 gene was used
as a probe to map the wheat homolog to the homoeol-
ogous position in T. monococcum under the syntenous
wheat Fr-2 QTL position (Vágújfalvi et al. 2003), and
independently confirmed at this position in the D·M
population (Choi et al. 2002). The co-mapping of
HvCBF3 and its homoeolog to the same location in the
three populations confirms the syntenous location of this
second cluster relative to the reported QTL at this po-
sition. Therefore, while genotypic variation leading to an
Fr-H2 QTL effect is not observed in the ‘‘facultative’’ ·
‘‘spring’’ D·M population (Fig. 2), the two tandem

HvCBF gene clusters map to this syntenous locus.
Whether the Fr-H2 QTL is the result of a single HvCBF
gene, the combined effect of a subset (or all) of the
HvCBF genes, or independent of the HvCBF genes
remains to be determined. Another likely functional role
for the CBFs is the finding that QTLs for the accumu-
lation of two COR gene products are coincident in the
N·T population with these HvCBF clusters (Francia
et al. 2004). One of these is COR14b, which contains a
single CRT motif controlling the LT-responsiveness of
the gene (Dal Bosco et al. 2003). CBFs bind CRT ele-
ments and we have found that the COR14b CRT motif
is specifically bound by a number of the HvCBF prod-
ucts at this locus (Skinner et al. 2005), implicating a
direct interaction between the HvCBFs and COR14b
gene regulation. Allele cloning from one winter, two
facultative, and one spring genotype demonstrated that
each contains alleles encoding for essentially identical
polypeptides (see Online Supplement). This suggests that
if CBF alleles are differentially affecting LT tolerance, it
is more likely due to differences in expression than the
encoded polypeptide form. The possibility of a critical
amino acid substitution cannot be ruled out, and gene
deletion may be of importance. However, in the three
likely cases of gene deletion, the missing gene is a
member of a multigene family and the genotype contains
a closely related subfamily member that could function
in a compensatory fashion.

Through both gDNA phage and BAC clones con-
taining multiple HvCBF genes, we confirmed for a
subset of theHvCBFs that cosegregation coincident with
the Fr-H2 LT tolerance QTL is representative of the
genomic region’s physical structure. A single recombi-
nation event has occurred within this cluster in the D·M
population, dividing it into two (Fig. 3); additional
mapping in the full D·M mapping population (n=236)
has not revealed any additional recombination events
(not shown). QTL resolution is insufficient to identify
one of the two groups as the most likely set of deter-
minants of the LT tolerance phenotype. The gene sets of
the two clusters are all members of the HvCBF3- and
HvCBF4-subgroups, and with one exception, fall into
distinct linkage clusters. The lone exception is
HvCBF14, an HvCBF4-subgroup member (Fig. 1) that
clusters with the HvCBF3-subgroup members. To date,
all the cloned physically tandem HvCBF gene sets be-
long to the same subgroup. While purely speculative, if
the subgroup members are all tandem (i.e., all HvCBF4-
subgroup then all HvCBF3-subgroup genes), this would
imply the D·M recombination breakpoint has occurred
between HvCBF14 and another of the HvCBF4-sub-
group members (2A, 4A, 4B, or 9). HvCBF2B, assigned
to 5H-L using addition lines (Table 1), has been con-
firmed to lie at this locus in the N·T population (Fig. 4)
(Tondelli et al. 2006). This physical clustering of the
HvCBF3- and HvCBF4-subgroups is not unique to
barley. In rice, a single scaffold clone contains three CBF
genes (OsDREB1s) in the order OsDREB1B-Os-
DREB1H-OsDREB1A; OsDREB1B is an HvCBF4
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subgroup member while OsDREB1A and OsDREB1H
are HvCBF3-subgroup members (Skinner et al. 2005).
The physical clustering of these groups in barley and rice
suggests that this arrangement was set early in cereal
evolution and the large number of HvCBF genes
occurring at this 5H locus may be due to localized
duplication and divergence events.

In terms of scenario two, we found numerous
examples of barley homologs to Arabidopsis LT toler-
ance regulators mapping to positions where there are no
reported Triticeae LT tolerance QTL. These include five
HvCBFs—HvCBF1,HvCBF5, HvCBF7, HvCBF8C, and
HvCBF11—and two additional regulatory genes:
HvICE2 and HvZFP16-1. Similarly, HvICE1 maps to a
region of 7H where no LT tolerance QTLs are present
(Tondelli et al. 2006). Possible explanations for these
finding include the limited sample of Triticeae germ-
plasm in which LT tolerance QTL have been mapped
and alternative functions for the regulatory genes. For
example, CBF genes also confer tolerance to drought
and salinity stresses. QTLs for drought and/or salt tol-
erance lie on these non-5H chromosomes (summarized
in Cattivelli et al. 2002) and marginally significant QTLs
accounting for a low percentage (<10%) of LT toler-
ance have been reported on barley chromosomes 2H and
6H (Tuberosa et al. 1997); the positional relationship of
the non-5H CBFs to these various abiotic stress QTL
effects is currently under investigation. The AtICE and
AtZAT genes belong to large gene families displaying
multiple regulatory functions, one of which is LT tol-
erance, and EST analyses show that barley also contains
many distinct expressed genes belonging to these fami-
lies. Therefore, further characterization and mapping of
additional members from these gene families will be
necessary to establish which members are candidates for
LT tolerance contributions in the Triticeae. Likewise the
Fr-H2 QTL effect absent in the D·M population (vs.
presence in the N·T) emphasizes the need to charac-
terize multiple germplasm crosses before concluding a
region is not a source of phenotypic variation.

Finally there is the interesting third scenario: LT
tolerance QTL with no current candidate. The smaller-
effect LT tolerance QTLs on 1H and 4H need to be
explored further and validated. HvZFP16-2 was as-
signed to 1H via the addition lines, but its positional
relationship to, and thus candidacy for, the 1H LT tol-
erance QTL is currently unknown. In terms of the large-
effect D·M chromosome 5H LT tolerance QTL in BIN
11 (i.e., Fr-H1), it is possible that an as yet uncharac-
terized regulatory gene (e.g., a novel HvICE and/or
HvZFP gene family member) will map to Fr-H1. We
currently consider it more likely, however, that this QTL
is a pleiotropic effect of the HvBM5A gene (Fig. 4), the
candidate for the VRN-H1 gene and QTL (von Zitzewitz
et al. 2005). The maintenance of a vegetative state during
the periods of lowest ambient and soil temperatures is
associated with maximum LT tolerance, and concomi-
tant with the transition to a reproductive fate via the
VRN or PPD response pathway in cereals, there is a loss

of LT tolerance capacity (Limin and Fowler 2002;
Danyluk et al. 2003). Therefore, it is plausible that Fr-
H1 is reflecting the genotypic combinations in the
mapping population for the retention of the vegetative
growth state (higher LT tolerance capacity) versus how
rapidly the floral fate transition (lower LT tolerance
capacity) occurs.

In summary, our use of the extensive EST collection
to identify barley homologs to key Arabidopsis LT
regulatory genes was effective. The combination of EST
database screens, allele cloning, and the barley-wheat
addition lines yielded a high success rate (87%, or 20 of
23 genes) of gene placement on the barley linkage map.
We established that a large cluster of HvCBF genes is
not a candidate for the Fr-H1 LT tolerance QTL effect
in Dicktoo · Morex. However, by comparative analysis
we found that the position of the CBF cluster (BIN10,
5H) is coincident with the reported position of Fr-H2 in
the Nure · Tremois barley mapping population and in a
diploid wheat mapping population. These results suggest
that in the Triticeae—as in Arabidopsis —members of
the CBF gene family may function as determinants of
winterhardiness in some germplasm. The functions of
the other CBF and regulatory genes, relative to LT tol-
erance, remain to be determined. Our progress in
establishing and understanding the components of win-
terhardiness in barley, based on the findings in Arabid-
opsis, simultaneously underscores the importance of
model systems, as well as the need to extend comparative
analyses to economically important crop species where
the information can potentially be used to develop
superior varieties.
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